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QUARKS, PARTONS, TRIALITY, EXOTICSAND COLOREDGLUE 

Harry J. Lipkin 

I. INTRODUCTION 

1. 1 Who Needs Quarks? 

The quark was invented by Gell-Mann and Zweig to explain 

certain regularities found in the hadron spectrum and the interactions of 

hadrons. The spectrum of the observed hadron states was found to consist 

of multiplets which were described simply in the SU(3) symmetry scheme 

with indications for possible other higher symmetries such as SU(~) or 

SU(3) X SU(3). The quark model gave a very simple explanation for the 

underlying basis of the multiplet structure and symmetry schemes, but left 

many important questions unanswered, the principal one being why quarks 

have not yet been observed. For a number of years now the quark model 

has provided a very good description of many aspects of hadron structure. 

It continues to be more and more successful as new data are accumulated. 

However, the fundamental question of why quarks behave this way and yet 

elude all attempts to find them remains unanswered. There is no argument 

against saying that the quarks have a very high mass and therefore have not 

yet been found and that the interactions between them are so strong that 

they produce bound states whose masses are very much smaller than the 

quark rest mass. However, it is not satisfying to explain phenomena which 

we do not understand by postulating the existence of a model which cannot 

be checked directly by experiment even though this model may ultimately 

turn out to be correct. 

A new impetus has been given to the quark model by the 

experimental discovery of scaling in deep inelastic lepton scattering. The 

fact that scattering cross sections in the so-called deep inelastic region 

depend only on dimensionaless combinations of kinematic variables and 
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not on any parameter with the dimensions of mass which sets the scale 

has suggested the parton model in which hadrons are composed of point- 

like constituents that have no scale. It is tempting to identify these 

constituents of the parton model with quarks, but it soon becomes clear 

that they are not exactly the same. Today it is fashionable to talk about 

“constituent quarks” and “current quarks, ” l-3 
and to avoid any com- 

mitment to either as real physical particles which may be discovered 

some day. 

There is no difficulty in principle in postulating that hadrons 

are made of particles that have not yet been discovered. There is a 

difficulty in practice; namely keeping theorists honest. As long as quarks 

have not been observed, the theorists are free to endow them with any 

properties they wish without fear of being contradicted by experiment. 

But freedom to choose quark properties mean.s effectively that any quark 

model has a large number of adjustable parameters. With enough adjustable 

parameters one can fit everything and predict nothing. So in this game you 

have to be careful and think about what you are doing. There is no substitute 

for using your head 

1.2 The Nuclear Physics Approach 

We shall try to stay honest by using the approach of nuclear 
17 

physics. 
4 

The nuclear physicists consider the nucleus 0 as consisting 

of a valence neutron and a closed shell 
16 

0 core. Electromagnetic 

transitions between low-lying states of 
17 0 are described in terms of 

transitions of the valence neutron between different orbits. From the 

experimental transition probabilities the properties of the valence neutron 

are calculated, and the neutron is found to have an “effective charge” 

between 0 and 1. Nobody believes that this is the charge of the free neutron. 

Clearly a complete description of the transition involves the 
16 

0 core as 

well as the valence neutron. But the fact that these 17 particles “conspire” 

to make transitions behave as if they were produced by a single nucleon 

having an effective charge is a useful way to parametrize the data and 
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give physical insight. A more fundamental treatment is then given with 

an intuition borrowing concepts from field theory and quantum electro- 

dynamic s The 
16 

0 core is analogous to the vacuum, which can be 

“polarized” by the external particle to “renormalize” its charge, A 

useful concept is that of a “quasi-particle” 
5 

to describe excitations of 

complicated systems which appear to be single particle excitations, 

whereas in reality they are something much more complicated. 

By analogy with valence nucleons in nuclei which have 

effective charges, interactions, form factors, scattering amplitudes, 

etc. which are very different from those of free nucleons, we can think 

of valence quarks in hadrons whose properties are very different from 

those of free quarks (if they exist). Many properties of the low-lying 

hadron spectrum can be interpreted in terms of these fictitious valence 

quarks, whose properties are determined to fit hadron data, and have no 

relation to properties of “real quarks. ” We can also think of free quarks, 

which may or may not be observable in nature, but which determine in 

some way the couplings of the electromagnetic and weak currents to hadrons. 

These free quarks can be used in current algebra, light cone algebra or 

parton model treatments of electromagnetic and weak processes under the 

assumption that the couplings of the currents to these quarks is well defined. 

These are the “current quarks. ” The wave function of the hadron in terms 

of these quarks is unknown and very complicated, like the exact nuclear 

wave function in terms of real nucleons. In the valence or “constituent” 

quark description, the hadron wave functions are simple and well known, 

but the nature of the quarks and their couplings, form factors, etc. are 

unknown phenomenological parameters which must be determined from the 

data. Their fundamental significance is very unclear, like that of the 

effective charge of the valence neutron in i70 . 

1. 3 The Slow-Motion-Strong-Binding Limit 

In our consideration of the old applications of the valence or 

constituent quark approach we use the slow-motion-strong-binding model of 
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6 
Amnon Katz as a guide to the intuition. This model considers a two-body 

system in relativistic classical mechanics and shows that it is perfectly 

reasonable for it to be bound with a binding energy nearly equal to the rest 

mass of its constituents. The internal motion of the particles is described 

by nonrelativistic equations. The center-of-mass motion (and also the 

interaction with a weak gravitational field) is described by a mass parameter 

which is just what is expected from naive considerations, the difference 

between the sum of the rest masses of the constituents and the binding 

energy. This mass can be as low as one pleases without causing difficulties. 

However, the nonrelativistic internal motion is described by a mass param- 

eter which depends upon the interactions. It is no longer the simple 

“reduced mass” of nonrelativistic two-body problems and can be anything 

from the order of the mass of the constituents to the mass of the bound state. 

Thus measurements on the bound system only can tell us this “effective 

reduced mass, ” and give no information on the mass of the free particle. 

Similar conclusions are obtained from a quantum-mechanical 

treatment using the Dirac equation for a single particle in an external 

potential. 
2 

The relativistic two-body problem with strong-binding is outside 

the competence of theoretical physics at present. But since the slow-motion- 

strong-binding limit exists and has the same intuitively attractive features 

both in the classical relativistic two-body problem and in the quantum 

relativistic one-body problem with external fields, it seems reasonable to 

use it as a basis for intuition in our nuclear physics approach to valence 

quarks 

1. 4 Does the Quark Model Really Predict the Hadron Spectrum? 

In this talk we consider the unanswered puzzles posed by one 

of the outstanding ‘~successes” of the quark model, the prediction of the 

hadron spectrum. The empirical rule that all observed hadron bound states 

and resonances have the quantum numbers found in the three-quark and 

quark-antiquark systems is in remarkable agreement with experiment. 

Since no alternative explanation or description has been given for this 

striking regularity in the hadron spectrum, this rule may constitute 
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evidence for taking quarks seriously. However, there has beenno success 

in giving any explanation for this empirical rule. Why only 3q and q;? Why 

not other configurations? I shall present an answer to this question in the 

framework of the simple minded nuclear physics approach to quarks. What 

exactly this answer means is not clear. But so far it provides the & 

answer to this question that has been proposed. That the question has an 

answer at all in any framework is interesting in itself, particularly since 

so far there are no other answers. 

The quark model also predicts the energy level spectrum of 

the states constructed from the three-quark and quark-antiquark systems 

and observed experimentally as hadron resonances. These predictions 

also seem to be in reasonable agreement with experiment, but pose 

additional questions. To obtain agreement with the observed baryon 

spectrum, the symmetric quark model7 must be used, which restricts the 

allowed states of the three-quark system to those being totally symmetric 

under permutations in the known degrees of freedom rather than totally 

antisymmetric, as one expects for fermions. This implicitly assumes that 

quarks obey peculiar statistics, or that there is a hidden degree of freedom 

sometimes called “color. I’ The low-lying meson spectrum shows all the 

states “predicted by the quark model” without any supplementary conditions. 

All the states of the quark-antiquark system appear as meson resonances; 

there are no predicted states which are conspicuously absent. 

In this talk we shall question the apparent success of the 

predictions of the spectrum. There is an inconsistency between the 

observation of bound states in all channels for qs scattering and the 

absence of bound states with quantum numbers of 2qqand 3qq. If the 

quark-antiquark interaction is attractive in all possible channels, as - 

indicated by the presence of bound states, an antiquark should be attracted 

by any composite state containing only quarks, like a diquark or a baryon, 

to make a bound state with quantum numbers which have not been observed. 

We suggest in this work that the only simple way to avoid this difficulty is 
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to discard an apparent success of the quark model and to use the colored 

quark models which predict states for the qs system that are not observed - 

as resonances. 

In our discussion, we assume that quarks are very heavy, 

and we consider only effects on the mass scale of the quark mass. All 

observed particles have zero mass on this scale. The observed hadron 

spectrum is a “fine structure” which we are unable to resolve in this 

approximation. This is a reasonable approach, since as long as we are 

not treating spin in detail, we are unable to distinguish between a pion and 

a p meson, and are neglecting mass splittings of the order of the p-n mass 

difference. We therefore are only able to discuss whether a particle has 

“zero mass” and appears as an observed hadron, or whether it has a mass 

of the order of the quark mass and should not have been observed. 

1. 5 The Three Puzzles of the Quark Model 

The question why only 3q and q< can be stated more precisely 

in terms of the following three puzzles: 

1. The triality puzzle: With attractive interactions between 

quarks and antiquarks, why are three quarks and an antiquark not bound 

more strongly than a baryon or two quarks and an antiquark bound more 

strongly than a meson? Note that we are not asking about four quarks vs. 

three quarks. Symmetry restrictions, such as the Pauli principle with 

colored quarks can prevent the construction of a four quark state which is 

totally symmetric in space, spin and unitary spin. But there is no Pauli 

principle which prevents an antiquark from being added to a system of 

three quarks in all possible states. Thus if each quark in the baryon 

attracts the antiquark, some additional mechanism must be found to 

prevent it from being bound to the quark system. 

2. The exotics puzzle: Even assuming some mysterious 

symmetry principle which prevents fractionally charged states from being 

seen, why are there no strongly bound states of zero triality, like those of 

two quarks and two antiquarks or four quarks and one antiquark? Note 
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that we are not discussing the Rosner exotics 9 
which are baryon-antibaryon 

resonances decoupled from the two meson system. We are discussing 

states like an I = 2 dipion resonance or bound state with a mass near the 

mass of two pions. If the quarks and antiquarks in two pions attract one 

another, why is there no net attraction between two positive pions to 

produce a bound state or a resonance very near threshold? 

3. The diquark or meson-baryon puzzle: Why is the quark- 

quark interaction just enough weaker than the quark-antiquark interaction 

so that diquarks near the meson mass are not observed, but three-quark 

systems have masses comparable to those of mesons? Vector gluons 

which are popular these days would bind the quark-antiquark system, but 

the force they provide between identical quarks is repulsive. Scalar or 

other gluons which are even under charge conjugation bind both the quark- 

antiquark and diquark systems equally. If the quark mass is very heavy, 

the single quark-antiquark interaction in a meson must cancel two quark 

masses, while the three quark-quark interactions in the baryon must 

cancel three quark masses. This suggests that the quark-quark interaction 

is exactly half the strength of the quark-antiquark interaction. 
2 

Such a 

result can be achieved by a suitable mixture of vector and scalar inter- 

actions, but it is not very satisfying to obtain such a simple fundamental 

property of hadrons by a model which fits it with an adjustable parameter. 

In all of this discussion, we are considering one-particle 

states, with the assumption that multiparticle states exist which contain 

separated particles each having the properties we are trying to explain. 

Multiparticle states pose additional problems. The allowed spectrum for 

multiparticle states is not specified by a set of allowed quantum numbers, 

but by the condition that their constituent particles individually have 

allowed quantum numbers. Thus the puzzles cannot be answered by general 

symmetry principles which apply to all states. The triality puzzle is not 

answered by a symmetry principle forbidding all states which do not have 

zero triality, because multiparticle states of zero triality must also be 

forbidden if they are made of particles which individually have nonzero 
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triality. Similarly, the exotics puzzle is not answered by a symmetry 

principle forbidding all states with exotic quantum numbers because 

multiparticle exotic states made from nonexotic particles are allowed, 

Thus any treatment which attempts to answer these puzzles must discuss 

both single-particle and multiparticle states, and must consider the 

space-time properties which distinguish between them. Algebraic 

arguments involving only internal symmetry groups cannot be sufficient. 

II. MODELS WITH EXTRA QUARKS 

Before considering these puzzles in detail, we review the 

modified quark models which consider the introduction of additional 

quark states. 

2. 1 Color and Charm 

In the Gell-Mann-Zweig quark model hadrons are constructed 

from three quarks which form an SU(3) triplet. Other models with additional 

quarks have been proposed, primarily for theoretical reasons. Since the 

GMZ triplet is already sufficient to describe all the known conserved 

quantum numbers and gives an adequate description of the hadron spectrum 

(except for a possible difficulty with statistics in the baryons), any addi- 

tional building block introduces new internal quantum numbers and new 

degrees of freedom which have not yet been observed, as well as new 

particle states. All such models require some excuse for throwing these 

extras away, either by postulating that they are simply not there, or by 

implying that extra states have a very high mass like the quarks themselves 

and may be observed at some time in the future. 

The additional quarks introduced are of two types, which 

have been called “charmed” quarks and “colored:’ quarks. Charmed 

quarks are simply added to the GMZ triplet to make a total of n quarks 

and a symmetry SU(n) which includes SU(3) as a subgroup. All the new 

charmed quarks are singlets in the conventional SU(3). The number of 

charmed quarks defines a new conserved quantity called charm, analogous 
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to strangeness which is the number of strange quarks. Since no charmed 

hadrons or hadrons containing charmed quark-antiquark pairs have yet 

been observed, the charmed quarks are assumed to have a mass sufficiently 

higher than the conventional triplet so that bound states containing them 

have a high production threshold. 

Colored quarks are sets of n SU(3) triplets, to give a total 

of 3n quarks. All the new quarks are SU(3) triplets, and the degree of 

freedom which distinguishes between the different triplets has been recently 

given the name of “color. I’ 

The three-triplet model, originally suggested to allow the 

three quarks in a baryon to have a symmetric wave function without 

violating Fermi statistics, 7 IS now called a model with “red, white and 

blue” triplets. For those who find this American chauvinism distasteful, 

we recommend the “Equal Opportunity Quark Model” (EOQM) which has 

equal representation of black, white and yellow quarks. 

A symmetry group SU(3n) can be defined which treats all 

quarks on an equal footing. This has a subgroup SU(3) X SU(n)color. There 

is no evidence for the rich hadron spectrum corresponding to the presence 

of states classified in nontrivial representations of SU(n)color. The 

observed hadrons are assumed to belong to the trivial singlet representation 

of SU(n) and “color excitations” of higher representations are either 

postulated not to exist or are assumed to have a high mass. The color- 

excited states are sometimes also called charmed states, but there is a 

definite physical difference between these two types of nonobserved states. 

The charmed states discussed above contain charmed quarks which are 

different from those in the observed hadron states. The color-excited states 

contain exactly the same colored quarks as the observed hadrons, they differ 

only in having a. different permutation symmetry in the space of the colors. 

Thus charmed states can be pushed up in mass by simply postulating a 

higher mass for charmed quarks. Color excitations can be pushed up only 
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by having the interaction between quarks depend on the permutation 

symmetry in color-space since different colored quarks all have the 

same mass. 

In colored quark models, the color may or may not be 

directly observable. In models where color is not observable, all quarks 

which differ only in color and otherwise have the same quantum numbers 

must have the same properties. In other models quarks of different colors 

have different observable properties, e. g., different electric charges. 

This possibility has been used to construct models with quarks of integral 

electric charges. Such integrally-charged colored quarks cannot satisfy 

the Gell-Mann-Nishijima relation and must have nonzero eigenvalues of a 

new additive quantum number which appears in the modified Gell-Mann- 

Nishijima formula. The electromagnetic current then has a component 

which is an SU(3) singlet and which is not a singlet in SU(n)color. 

The most recent theoretical models using charmed or colored 

quarks have been in gauge theories of electromagnetic and weak inter- 

actions. 
10 

These models use symmetries to provide selection rules 

against undesired weak transitions, such as those due to neutral currents 

in first or second order. These symmetries are incompatible with SU(3) 

and a higher symmetry is required to incorporate both SU(3) and the weak 

interaction symmet i-y. The higher symmetry requires extra quarks. The 

suppression of undesired second order transitions is achieved by a cancel- 

lation in which unobserved charmed or color-excited intermediate states 

play a crucial role. These cancellations can occur only if the dominant 

contribution comes from intermediate states having a much higher energy 

than the excitation energy of the unobserved states. Thus these models 

can place upper limits on the excitation energies of these states which can 

be tested by experiment. 

In this talk, we are concerned primarily with the strong 

interactions which do not depend upon the couplings of quarks to the 

electromagnetic and weak currents. We therefore do not need to distinguish 



between models with color-independent fractional charges and models with 

color-dependent integral charges (e.g., Han-Nambu 
11 

), since they can 

have identical strong interactions. 

2. 2 The Deuteron World 

Some insight into the colored quark models is given by the 

analogy of a world in which all low-lying nuclear states are made of 

deuterons and have isospin zero; free nucleons have not yet been seen and 

experiment has not yet attained energies higher than the deuteron binding 

energy or the symmetry energy required to excite the first I = 1 states. 

In this isoscalar world where all observed states have isospin zero the 

isovector component of the electromagnetic current would not be observed 

since it has vanishing matrix elements between isoscalar states. The 

deuteron energy level spectrum (something like that of a. diatomic molecule) 

would indicate that the deuteron was a two-body system, but there would be 

no way to distinguish between the neutron and the proton. The deuteron 

would thus appear to be composed of two identical objects which might be 

called nucleons. Since the deuteron has electric charge tl, the nucleon 

would be assumed to have electric charge tli2. Furthermore, the nucleon 

would be observed to have spin l/2 and be expected to satisfy Fermi 

statistics. However, the ground state of the deuteron and all other observed 

states would be found to be symmetric in space and spin. Thus, the nucleon 

would appear to be a spin l/2 particle with fractional electric charge and 

peculiar statistics. 

Some daring theorists might propose the existence of a hidden 

degree of freedom expressed by having nucleons of two different colors. 

There would be a hidden SU(2) symmetry (which might be called isospin) to 

transform between the two nucleon states of different colors. All the 

observed low-lying states would be singlets in this new color (or isospin) 

SU(2). Since the color singlet state of the two-particle system is anti- 

symmetric in the color degree of freedom, the Pauli principle requires the 

wave function to be symmetric in space and spin, thus solving the statistics 

problem. 



2.3 Then-, With and Without Color 

The direct analog of this deuteron problem in hadron quark 

models is the quark model for the n-. In the conventional quark model, 

the n- consists of three identical strange quarks [called X-quarks by some 

people and s-quarks by others), with their spins of l/Z coupled symmetri- 

cally to spin 312. Since the electric charge of the n- is -1, the strange 

quark is required to have charge -l/3, and it is also required to have 

peculiar statistics because the system of three identical particles has a 

symmetric wave function in all known degrees of freedom. Some daring 

theorists have therefore proposed the existence of a hidden degree of 

freedom expressed by having strange quarks of three different colors,’ 

and a hidden SU(3) symmetry to transform between the three strange quark 

states of different colors. All the observed low-lying states are singlets 

in this SU(3)color group. Since the color-singlet state of the three-particle 

system is antisymmetric in the color degree of freedom, the Pauli principle 

requires the wave function to be symmetric in the other degrees of freedom, 

in agreement with experiment and ordinary Fermi statistics. It is also 

possible to give these colored strange quarks different integral electric 

charges, one with charge -1 and two neutrals, by analog with the nucleons 

in the deuteron. However, as we are concerned primarily with strong 

interactions, we need not choose between models having different electric 

charges for colored quarks. 

We have chosen the example of the n- for this discussion to 

simplify the treatment of the conventional SU(3) degree of freedom by 

considering only strange quarks. When the full triplet of conventional 

SU(3) is considered, there are three colors for nonstrange as well as for 

strange quarks, and nine quarks altogether. There are two SU(3) groups, 

the conventional isospin and hypercharge SU(3) and the color SU(3), which 

are combined into the direct product SU(3)I y X SU(3)coIor, 
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III. THE COLORED GLUON MODEL 

We now return to the three puzzles. In the colored quark 

description of hadrons the restriction that only color singlet states are 

observed immediately solves the triality puzzle, since only states of zero 

triality can be color singlets. But requiring all low-lying states to be 

color singlets is thus equivalent to requiring all low-lying states to have 

zero triality; it merely replaces one ad hoc assumption with another. 

What is needed is some dynamical description in which the color singlets 

turn out to be the low-lying states in a natural way. To attack this problem 

we return to the fictitious deuteron world where all low-lying states are 

isoscalar and which is the analog of the colored quark description of 

hadrons. We follow the treatment of ref. 8. 

3. 1 A Dynamical Model for the Deuteron World 

At first this isoscalar deuteron world seems very artificial. 

Why should all states with I = 0 be pushed down and all states with I # 0 be 

pushed up out of sight? But there turns out to be a very natural nuclear 

interaction which creates exactly this isoscalar deuteron world; namely 

nuclear two-body forces dominated by a very strong Yukawa interaction 

provided by 3 exchange. This interaction is attractive for isoscalar states 

and repulsive for isovector states, in both nucleon-nucleon and nucleon- 

antinucleon systems. It thus binds only isoscalar states. The p-exchange 

interaction between particles i and j can be expressed in the form 

-3 
Vij = v ;. . tj, 

1 (14 

where Ti is the isospin of particle i and V contains the dependence on all 

other degrees of freedom except isospin. If we neglect these other degrees 

of freedom we can write for any n-particle system containing antinucleons 

and nucleons, 
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V(n) = + ,z, vij = ?j - 2 + =$[I(Itl) -nt(ttl)] (lb) 
1’1 i 

where I is the total isospin of the system and t is the isospin of one particle; 

i. e., l/2 for a nucleon. 

The interaction (lb) is seen to be repulsive for the two-body 

system with I = 1 and attractive for all isoscalar states. A pair of particles 

bound in the I = 0 state is thus seen to behave like a neutral atom; it does 

not attract additional particles. Since the pair is “spherically symmetric” 

in isospace, a third particle brought near the pair sees each of the other 

particles with random isospin orientation, and its interaction with any 

member of the pair is described by the average of (la) over a statistical 

mixture which is 314 isovector and l/2 isoscalar. This average is exactly 

zero. 

The neutral atom analogy is very appropriate far the 

description of the observed properties of hadrons. The forces between 

neutral atoms are not exactly zero, but are much weaker than the forces 

which bind the atom itself. These interatomic forces produce molecules 

which are much more weakly bound than atoms. Similarly the forces 

between hadrons do not vanish but are much weaker than the forces which 

bind the hadron itself. These interhadronic forces produce complex nuclei 

which are much more weakly bound than hadrons. In the approximation 

where we neglect energies much smaller than the quark mass these 

“molecular” effects are safely neglected. 

3. 2 The Colored Gluon Interaction for Hadrons 

We now generalize this picture for the colored quark 

description of hadrons. If there are n colors, the interaction (1) must be 

generalized from SU(2) to SU(n). The quark-antiquark system then still 

saturates at one pair, but the multiquark system can be seen to saturate 

at n quarks. A quark-antiquark system which is a singlet in SU(n) exists 

for all values of n. However, the existence of a singlet in the two-quark 

system is an accident which occurs only in SU(2) and is not generalizable 
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to SU(n). However the I = 0 two-quark state is also characterized as 

antisymmetric under permutation of the two particles, This antisymmetry 

is generalized easily to SU(n) where totally antisymmetric states exist for 

a maximum of n particles, and the n particle antisymmetric state is a 

singlet in SU(n). 

We now construct the analog of the interaction (lb) for a 

model with three triplets of different colors. Then the Yukawa interaction 

produced by the exchange of an octet of “colored gluons” has the form 

analogous to (i). For an n-particle system containing both quarks and 

antiquarks, 

U(n) = + C 
uij C girgjr 

itj IT 

where uij depends on all the noncolor variables of particles i and j and 

!&Jr = 1, . . , 8) denote the eight generators of SU(3)color acting on a single 

quark or antiquark i. 

If the dependence of uij on the individual particles i and j is 

neglected, the interaction energy of an n-particle system can be calculated 

by the same trick used in eq. (lb) to give 

V(n) = z(C - nc) (3a) 
. 

where u is the expectation value of u.., 
‘J 

integrated over the noncolor 

variables, C is the eigenvalue of the Casimir operator for SU(3)color for 

the n-particle system and c = 4/3 is the eigenvalue for a single quark or 

antiquark. These eigenvalues are directly analogous to the SU(2) Casimir 

operator eigenvalues I(1 t 1) and t(t t 1) in eq. (lb). 

In the approximation where all energies small compared to 

the quark mass Mq are neglected, the interaction (3a) gives the mass 

formula 

M(n) = nMq t V(n) = n(Mq - y) t Cu/2. (3b) 
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The interaction (2) and the mass formula (3b) were first proposed by 

Nam bu, 
13 

and the saturation properties of the interaction were considered 

by Greenberg andZwanziger. 
14 

However, the remarkable properties of 

this interaction as demonstrated above in the simplified example of the 

analogous deuteron world have received little attention. 

3. 3 Answers to the Triality and Meson-Baryon Puzzles 

The formula (3b) can test the triality puzzle or the meson- 

baryon puzzle by showing whether observable “zero mass” hadron states 

exist for a given number of quarks and antiquarks. However, it cannot 

test the exotics puzzle, since it gives no information about the spatial 

properties of the states. It cannot distinguish between one-particle states 

and multiparticle scattering states and all zero-triality exotic states are 

allowed as multiparticle states. 

Since C is positive definite and has the eigenvalue zero only 

for a singlet8 in SU(3)color, and u 2~ 0 as is evident from the two-body 

system, the state of the n-particle system with the strongest attractive 

interaction is a color singlet. Since the interaction is a linear function of 

n all such singlet states have zero mass if cu/2 = Mq. For this case 

M(n) = (C/c)M 
q if cu12 = Mq. 

(3c) 

The model thus gives observable hadron states for all quark and antiquark 

configurations for which C = 0 states exist. Since C = 0 states exist only 

for configurations of triality zero, this answers the triality puzzle. 

The meson-baryon puzzle is also answered by this interaction, 

since zero mass is attained both in two-body and three-body systems. To 

obtain C = 0, the two-body system must be a quark-antiquark pair, while 

the three-body system must be a three quark state, totally antisymmetric 

in color space. The approximation of neglecting the dependence of uij on 

i and j is justified in these two cases since there is only one pair in the 

two-body system, and a totally antisymmetric function has the same wave 

function for all pairs. The values8 of the interaction parameter C-m and 
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the mass parameter C/c are listed in Table I for all states of the two-body 

system. These show that the quark-quark interaction in the baryon is 

exactly half of the quark-antiquark interaction in the meson, as required 

for the meson-baryon puzzle. The diquark mass is thus equal to one quark 

mass, since its interaction only cancels the mass of one of the two quarks. 

TABLE I 

Values of the Interaction and Mass Parameters C-nc and C/c 

system SU(3) COlOI 
Representation C C-nc c/c 

quark - qua rk triplet (antisymmetric) 413 -413 1 

quark-quark sextet (symmetric) io/3 t213 512 

quark-antiquark singlet 0 -813 0 

quark-antiquark octet 3 t1/3 914 

The interaction averaged over all quark-quark states 

is seen to be zero and similarly for all quark-antiquark states. An anti- 

quark or quark added to a meson or baryon thus has a zero net interaction, 

as there can be no color correlations between particles in a singlet state 

and an external particle, and each pair feels the average interaction over 

all color states. This suggests that the exotics puzzle is also answered, 

and that the states of zero mass obtained from the interaction (2) for exotic 

quantum numbers are multiparticle continuum states rather than bound 

states or resonances. 

3. 4 The Exotics Puzzle-Spatial Properties of Wave Functions 

To examine the exotics puzzle in more detail we consider 

the spatial dependence of the interaction (2) for the specific case of the 

two-quark-two-antiquark system, with an inte *action uij depending only 

on the positions of the particles and not on momenta, spin and unitary spin. 

In the representation with the coordinates ti of the four particles diagonal, 

the interactions u.. are also diagonal and can be treated as c-numbers. In 
1J 

this representation the interaction (2) is a 2 X 2 matrix in color space as 

there are two independent couplings for four particles to a color singlet. 
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We diagonalize this 2 X 2 matrix to obtain two functions of the coordinates 
+ 
ri which describe the spatial dependence of the interaction in its two color 

eigenstates. 

It is convenient to choose a nonorthogonal basis, related by 

permutations, which displays quark-antiquark couplings to C = 0, 

Ia) E 1(13)1(24)1) (4=) 

1P) 3 !(14)$23J) (4b) 

where particles 1 and 2 are quarks, 3 and 4 are antiquarks and (ij), denotes 

that particles i and j are coupled to C = 0. Several useful identities follow 

from the properties of the C = 0 two-particle state. 

Ll]P) = l/3 (5=) 

c girg3rla) = c gZcgqr/d = -(8/3) ia) (5b) 
[r cr 

c giTg401p) = c g21Tg3r, !P) = -(813) ‘P) 
r r 

(giiTtg31T) /a) = (gzITtgqr) /a) = (giw+gql,) IP) = (g&+g$ !p) = O 

(a /g*rg4iila) = (P !glmg3u IP) = 0 

(aJgimg4J) = (P jgimg3rld = -(8/3)(a IP) = -e/9. 

(54 

(5e) 

(5f) 

By operating with the interaction (2) on the wave functions (4) 

and eliminating the color variables with the aid of the identities (5) we obtain 

-3Ula;= (8ua-u$uq)!a) t3(uP-uq)Ip) ((~a) 

and 

where 

-3Ulp) = 3(ua-~~)!a) t(8up-u 
a 

tuq)IP) (6b) 

u 
a = ui3 t uz4; np = Ui4 t Llz3; uq = IliZ t u34. (7) 
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Solving the secular equation for eqs. (6) gives the eigenvalues for U, 

U’ = -(7/6)(uatu ) - (l/3)uq * (l/Z) 
P 

8(ua-u )2 t (uatu 
P P 

- 2~~)~. (8) 

If uij is a finite range potential which vanishes at large 

distances, the eigenvalues (8) reduce to those for two independent two- 

particle clusters for all values of the coordinates :i which correspond to 

two pairs separated by a distance greater than the range of the potential. 

The case u = u 
P 9 

= 0 describes such a separation between the pairs of 

particles (13) and (24). The corresponding eigenvalues from eq. (8) are 

U’ = -(S/3)= a and U’ = t(l/3)u, exactly those of Table I for two separated 

quark-antiquark pairs in the singlet and octet states. The case u = u a P 
= 0 

describes separated pairs of like particles (12) and (34) and has eigenvalues 

IJ’ = -(3’4% 
and U’ = t(2/3)uq exactly those of Table I for two separated 

quark-quark and antiquark-antiquark systems in the triplet and sextet states. 

To test the exotics puzzle we look for coordinate configura- 

tions where four-particle correlations may give stronger binding than in 

two noninteracting clusters. Since u and u 
a 

p appear symmetrically in (8), 

we need only consider values of u G u 
P a. 

For any value of ua the value of 

“P 
Gus which minimizes the interaction (8) is u 

P 
= ua with the negative sign 

for the square root. This gives 

U’ = -(8/3)u a - (2/3)(ua - uq). (9) 

This expression is minimized by choosing the minimum value of u 
9 

consistent with a given value of u 
a’ 

For monotonically decreasing potentials 

this is achieved by placing the four particles at the corners of a square with 

the like particles at opposite diagonals. 

For a square well potential the particles can be arranged in 

a square with the diagonal greater than the range of the forces and the sides 

less than the range. This configuration has u = 0 and forms a stable four- 
9 

particle state with a binding 25% greater than that of two quark-antiquark 

pairs. However, the sharp edge of the square well is essential for this 



20 

binding and does not seem reasonable physically. For smooth potentials 

without sharp edges such as Gaussian, Yukawa or harmonic oscillator 

potentials eq. (9) shows that such a four-particle cluster is less strongly 

bound than two noninteracting quark-antiquark pairs, and the system 

simply breaks up into two clusters. This leads to a description in which 

all states having exotic quantum numbers are just scattering states of 

particles which individually have nonexotic quantum numbers, and answers 

the exotics puzzle. 

IV. CONCLUSIONS 

An important conclusion from this discussion, irrespective 

of the validity of the colored gluon model, is that of the crucial role played 

by repulsive forces and the extra color degree of freedom in finding 

answers to the three puzzles. The conventional quark model has observed 

mesons in all states that can be constructed from a quark-antiquark pair. 

This has been hailed as a great success of the quark model. But perhaps 

this is not a success but a failure. With bound states in all channels the - 

quark-antiquark force is required to be attractive in all channels and 

cannot prevent an antiquark from being bound to a baryon. With dominant 

two-body forces and no adhoc three-body forces, antiquark-baryon binding 

will occur unless the quark-antiquark interaction is repulsive in many states 

and repulsion dominates the antiquark-baryon interaction for all possible 

states of the antiquark. These many repulsive channels are provided in 

the three-triplet model which has 81 q< states where only nine are 

observed. The absence of the other 72 “charmed” states should not be held 

against the model, as repulsive quark-antiquark forces in all charmed 

channels not only explain this absence but also provide the necessary 
- 

repulsion to explain the absence of a.11 3qq bound states. 

In the conventional quark model, vector gluons cannot bind 

both mesons and baryons, because the vector interaction between identical 

particles is repulsive and cannot bind states like the n-, A 
tt 

and A- 
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composed of three identical quarks. In the three-triplet model, the three 

quarks in each of these hadrons are no longer identical while all states 

containing three identical quarks are “charmed states” and should have a 

high mass. Thus repulsion between identical quarks is actually desired 

in the three-triplet model and there is no objection to vector gluons. 

In the three-triplet model “color” correlations absent in 

the conventional quark model increase binding and help in saturation. The 

quantum numbers of individual bound quarks are not fixed; they change in 

a correlated way as a result of exchange forces. With Nambu’s interaction 13 

the two-body forces are attractive in certain color correlated states, while 

the interaction in an uncorrelated state (averaged over color) is zero, as 

repulsions and attractions cancel exactly. A color singlet state thus behaves 

like a neutral atom. There are no color correlations between an external 

particle and a quark in a color singlet and the interactions cancel. 

The three-triplet model with colored vector gluon binding 

gives a good description of those dominant features of the hadron spectrum 

expected in zero order: namely that only the quark-antiquark and three- 

quark systems appear as bound states with a mass of approximately zero on 

the scale of the quark mass. This is in contrast with other models whose 

zero order results are in violent disagreement with experiment. These are 

unable to explain the three puzzles discussed in this paper, and can only 

hope that a better theory makes the puzzles go away. Further refinements 

in the description of the hadron spectrum can be expected in the framework 

of the three-triplet vector-glum model by considering higher order effects, 

such as the additional phenomenological potentials commonly used 
15 

to 

calculate the hadron spectrum. These are entirely consistent with the three- 
7 triplet model since the symmetric quark model 1s commonly used in all 

treatments for baryons. The three-triplet model should therefore be con- 

sidered very seriously as an alternative to the single-quark model. 
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APPENDIX 

Troubles with Parton Models for Inclusive Meson Production 

This point was raised during the talk and is added here. 

It is very tempting to make models for inclusive meson 

production in which a quark finds an antiquark partner and the two escape 
16 

as a meson. But the spins of the quarks cannot simply be ignored. If 

there are no spin correlations between the quark and antiquark, a quark- 

antiquark pair has a 75% probability of being in the triplet spin state and 

only a 25% probability of being in the singlet spin state. The triplet state 

is a meson resonance, which then decays to produce two or more pseudo- 

scalar mesons. The singlet state can either be a pseudoscalar meson 

or a higher meson resonance. Thus at least three meson resonances are 

produced for every directly produced pseudoscalar meson and pseudoscalar 

meson production via resonance decay is at least six times greater than 

direct production. Kinematic factors may discriminate against resonance 

contributions because of the higher masses of resonances and because the 

resonance decay products individually have lower momenta than a directly 

produced meson. But it is clearly very risky to overlook resonance 

cant ributions. Any model which considers only direct production of 

pseudoscalar mesons must be viewed with suspicion. 

As an example, consider the production of kaons and pions 

both directly and via decays of the vector nonet and the 11. There is no 

obvious reason for leaving out tensor and higher mesons, but their presence 

can only make matters worse. Let g(M) denote the cross section for the 

direct production of meson M and v(M) denote the total cross section which 

includes production via resonance decays. Then 

c(K+) = ;(K+) t $(K“+) t f&(K:“) t ;;(I#) 

m(K’) = ;(K’) t f&(K”+) t f;(K*‘) t ;;(c$) 

T(K-) = ;(K-) + $(K”-) + $($‘0) + +) 
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,.(g’) z f,(E’) + ;;(K”-) + $(k”‘) + +;;(+) (Aid) 

LT(~+) = ;(TT+) t ;(p+) t ;(p”) t G(w)+ x;(q) t $(K’“+) t f;(?‘) C-Q=) 

r(~-) = G(n-) t ;(p-) t ;(p”) t c?(w) t x;(q) t $(K*-) +$(K’) (A2b) 

&TO) = ;(n”) t ;(p+) t ;(p -) t L+(w) t x&(q) t $(K*+) t $(K*-) 

+ L(K*O) + L(K”O) 
WC) 

where the factors i/3, 213 and l/2 are isospin Clebsch-Gordan coefficients 

which give branching ratios of different charged modes (isospin breaking is 
t -0 

neglected) and x denotes the fraction of q * n n TI decays. Other r( 

decays producing pions are neglected. 

Let us now assume that vector mesons are produced three 

times more frequently than pseudoscalars because of the statistical spin 

factor. Then 

;(K*) = 3;;(K) (A3=) 

G(P) = 3;;(ll) WV 

C(w) = 3;;(n0), (A3c) 

where eqs. (A3a) and (A3b) hold individually for any charge state. We also 

assume that q production is less than n 
0 

production by some factor and 

write 

xl?(q) = ycT(nO), (-434 

where y < 1. 

Then from eqs. (A3), (Al) and (AZ), we obtain 

r(K+) = cr(K’) = 2[;(K+) t ;;(K’)] t $(+) (A4=) 

(A4b) dK-) = dE”) = 2[;(K-) t ;(??‘)I + i;(4) 
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m(n+) = 4:(n+) t (6 ty) &TO) t 2&(K+) t 2;(E”) (A5=) 

c(n-) = 4&-) t (6 ty) ;(n’) t 2;(K-) t 2;(K”) (A5b) 

o(n’) = (4 ty) ;(rr’) t 3&(n+) t 3;(rr-) t ;(K+) t ;(K-) t;(K’) t>(E”).(A5c) 

- 
Equations (A4) give the surprising result that u(K) and 

F(K) production rates are independent of the charge of the kaon, even 

though the direct production rate may be charge dependent; e. g., 

v(K+) = m(K’) even when &(K+) # ;(K’). This results because the 
* 

contributions from K decays and direct production have opposite charge 

asymmetry. The pion has a higher isospin than a kaon; thus the charge 
:> 

asymmetry in the K distribution shows up in the decay pions, and the 

charge asymmetry in the decay kaons is the reverse. The exact cancella- 

tion of the charge asymmetries in direct and resonance productions results 

from the values of the Clebsch-Gordan coefficients. 

Other quantities of interest which are obtained from eqs. (A4) 

and (A5) are the total pion and kaon production cross sections summed over 

all charge states. We denote these by v&M). 

rtot(K) = 4ctot(K) + 2;($) W=) 

utop = 7;tot (n) + (9 + 3y) t+(n’) t 3:&K) (A6W 

= (10 +Y) gtot (nI) + (3 +Y)[%‘) - %+) - ;(rr-)I t ‘z&K). (A6c) 

The ratio of pion to kaon production is seen to be considerably larger than 

predictions from direct production. For example, if we neglect the small 

n and $ contributions and assume equal direct production cross sections 

for all pion and kaon states, the n/K ratio is enhanced by a factor of 712 

over the value predicted by direct production. 

Another interesting relation is 

m(TT+) t &T-) - 2,(11°) = -2[LG(llf) t ;i(TT-) - 2&(n0)1. (A7) 
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This particular linear combination of pion cross sections is predicted to 

vanish by the quark parton model. It also vanishes in any model which 

produces the pions via fragmentation 
17 

of an object with isospin l/2. It 

is thus not surprising that the quantity (A7) vanishes for the total cross 

sections if it vanishes for the direct production cross sections, since the 

relevant resonance production and decay conserves isospin. 

(q + rrtrr-nO decays do not contribute to this quantity.) However, it is 

amusing that any deviation from zero in the direct production has its sign 

reversed in the total production. If the direct production of neutral pions 

is less than half the direct production of charged pions, the total production 

of neutral pions will be greater than half the total production of charged 

pions. 

‘ 
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